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The dertvatlve nonhnear Schrodmger equation IS solved by apphcatlon of the 
Ablowltz--Ladlk scheme to an equtvalent equation The varlatlons of the results due to 
modllicatlons m the spatial grid sxze and time step are analyzed The scheme mamtams the 
mam propertles of the orlgmal equation and allows the use of rather large time steps ,c’ 1988 

Academic Press. Inc 

I. INTRODUCTION 

In [ 11 Ablowitz and Ladik generalized the theory of the inverse scattering trans- 
form (IST) to cover nonlinear partial difference equations. This generalization is 
particularly useful for developing numerical schemes of nonlinear evolution 
equations which mamtain the main properties of the original equations. The 
procedure is as follows. One proposes a discrete version of the standard 
Ablowitz-KaupNewell-Segur (AKNS) eigenvalue problem [2] of the form [ 1,3] 

where n refers to the spatial grid pomt and m to the time level, z is the eigenvalue, 
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P, and c2 are the correspondmg eigenfunctlons and R;, Q;, S;, and c are the 
potentials. Then, the eigenfunctions are advanced m time according to 

and one forces the consistency condition 

A”‘(E,,v:,~) = &(A” 1’:) I= 1,2, (1.3a) 

where 

uvg = 0: + , ; A”‘~I,,,=~~;+‘-~D; (1.3b) 

are the space and time displacement operators, respectively. Finally one expands 
A;, By, C;, and 0; in powers of z and l/z, imposes ( 1.3) using ( 1.1) and (1.2), and 
equates terms with equal powers of Z. This procedure gives relations between the 
coeflicients of the expansions of A;, By, C;, 0; and the potentials, and It also 
gives the evolution equation that the potentials must satisfy in order that (1.3) is 
valid. That is, the evolution equations are the integrability condition of the elgen- 
value problem. It is clear that the menthod parallels the standard procedure of 
Ablowltz et al [Z]: if one chooses different expansions for A;, B;, C;, and 0; and 
different relations between the potentials one obtains different evolution equations. 
In this way the NLS, KdV, MKdV, and S-G equations appeared in Ref. [2] as the 
mtegrability condition of a particular continuous version of ( 1.1) and (1.2). It is 
then clear that this method 1s suitable to obtain the difference scheme for some non- 
linear equations of the above mentioned class. In [3] Taha and Ablowitz gave the 
discrete version of the NLS, KdV, and MKdV equations which can be used for 
their numerical integration [4,5]. The main differences between the equations 
obtained in this way and the ones one would obtain by writing the original 
nonlinear differential equations directly in finite difference form, appear in the 
expression of the nonlinear terms. It is then crucial that these terms be expressed in 
a form which maintains the main properties of the equations which are completely 
Integrable by the IST method. 

However, we cannot apply the above procedure to the derivative nonlinear 
Schriidinger equation (DNLS), which describes the evolution of nonlinear AlfvCn 
waves, 

141- 4q’rL + qr< = 0; r= -NSq* (1.4) 

where NS is a sign (NS = f 1 ), since Eq. (1.4) is the integrability condition of 

vly+i52u, = <qu2, 

v2r- il*v, = @I,, 
(1.5) 
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with 

0 ,, = Av, + Bv,, 

v2, = Cu, + Dv:, (1.6) 

D= -A 

and (1.5) is different from the standard AKNS elgenvalue problem. A, B, and C are 
functions of q and r, whose detailed form is not relevant to this discussion (see 
Eq. (1.11) below for an equivalent useful expression). Furthermore, when one 
expands A, B, C, and D in powers of 5 and equates terms with equal powers, the 
evolution equation (1.4) is obtained for the 5’ term, while, for the standard AKNS 
case it is always obtained for the 5’ one. This fact, which 1s due to the factor r in 
front of the “potentlals” q and r in (1.5), introduces some asymmetry in the problem 
and it is not clear how one can generalize the discrete version (1.1) to this case. 
However, there is a transformation of the original eigenfunctions u, and u2 which 
leads (1.5) to the standard AKNS problem. This transformation is given by [6] 

u; = 0, exp( -ip) 

vi = 5u2 exp( ip) - i u, r exp( ip), 
(1.7) 

where p = l:, rq/2 dx, and it has been used in [6] for solvmg the DNLS by the 
IST. In this way, the eigenvalue problem (1.5) may be written as the standard one 

v’,, + ih’, = Qu;, 

1$x - I/IV; = Ru;, 

where 

Q=qexp(-2ip) 

R= -~(r,+r$)exp(2i~), 

The evolution equations for R and Q are 

iQ, - 2Q2R + Q,, = 0 

iR, + 2R2Q - R,, = 0 

(1.8) 

(1.9) 

(1.10) 

and may be obtained as the integrability condition of (1.8) together with the 
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corresponding evolution equations for o’, and ui (which are similar to the ones 
given in (1.6)) expanding A’, B’, C’, and D’ as 

A’ = - iQR - 2d2 

B’=rQ,+2QA 

C’= -iR,f2RL 

D’ = A’. 

(1.11) 

This is the same expansion that must be performed in order to obtain the NLS 
equation. It is clear from (1.10) that the evolution equations for Q and R are similar 
to the NLS system. However, the difference is the relation between R and Q, which 
is R = T Q* for the NLS and 

R= -+Q*+N$Q: (1.12) 

for the present case. 

II. EXTENSION OF THE NLS RESULTS TO THE TRANSFORMED PROBLEM 

The similarity between the equations for Q and R and the NLS suggests a simple 
way to obtain their discrete version. We follow the steps described in the Introduc- 
tion, taking y = ST = 0, and choose the expansions 

A”=A’~2’~-2+A(0)+A~2)z2 ” n n 

B”‘= B’-l’z-l + B;llZl n n 

p=c(-l~z-l + c(L)~I n ,I ” 

D’f = DLp3-’ + D;o’+ D92 

(2.1) 

as in the case of the NLS equation [3]. We then impose the consistency 
condition (1.3) and obtain a discrete version of the evolution equation for Q. If we 
require that in the linear limit, as it is done in [3] 

id” Qr -= 
At ’ (Q5, -2(dx)2 

-2Q~+Q~-,+Q~~,‘-2Q~+‘+Q~:;) (2.2) 

then the evolution equation reads as 
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id’” Q; 
At ’ (Q::‘,, =-2(4x)2 -2Q::+P,,-,Q,m_,+P,,Q~=,l-2Q::+‘+Q~-t,l, 

(2.3) 

where 

SZ’=Qr+, Rr+Q;Rr-,; Q=Q:-,R~QTR~,, 

P,,= fi [(l-RF+’ Q;l+ ‘(A.r)‘)/( 1 - R~Q~(Ax)~)], 
/I=-x 

which is similar to Eq. (2.8) of Ref. [3], but where RF has not been replaced by 
0;‘. The problem in this case is that the relation between R and Q is nonlinear and 
the method gives no answer on how to write it. Nevertheless, since in the discrete 
version of the AKNS the yu term is converted into Q,“v;, we choose 

R;=;NS. Q IL-Q5 
2Ax > 

-; Q:(Q:* 1’. (2.4) 

III. NUMERICAL ALGORITHM AND RESULTS 

We have used Eq. (2.3) in order to numerically solve the equation for Q, for both 
signs in the nonlmear term (NS = 1 and NS = - 1) of the original DNLS equation. 
For simplicity, we employed a local scheme (which is equivalent to set P, = 1, 
3:: = Tr = 0 in (2.3)). We have chosen periodic boundary conditions with 2N+ 1 
spatial grid points (n Q N). We have used a numerical algorithm which is explained 
in Section 2 of Ref. [4]. The only differences with the formulae given in [4] are the 
expression for R and the sign of E = -2i( (Ax)‘/At). This last difference is due to the 
fact that we solve an equation with a different sign in the dispersion term than the 
one that is solved in [4]. The algorithm chosen involves two nested iterations. The 
outer one is related to the fact that the expression (2.3) is highly implicit and 
contams nonlinear terms in which Qn values at the new time level (m + 1) appear. 
Therefore, we first take Q;+ ’ = Q; in those nonlinear terms and solve a linear 
system at the new time level. The inner iteration, is related to the way this linear 
system is solved, since the corresponding matrix is not inverted, but the values 
Qn m+ ’ at different spatial grid points are obtained by an iterative procedure. For 
both Iterations we use, as in Ref. [4], the Crank-Nrcholson back and forth sweep 
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method for the heat equation. If we label by J the outer iteration number, the whole 
procedure 1s stopped when 

IQ, m+‘.J- Q;+ ‘~~+‘~/~Q~+‘~~~ <tolerance 

and the value Q; + ‘.I+ ’ is taken as the approximate solution at time t = (m + 1) Ar 
and position x = n Ax. The algorithm requires a small (Ax)‘/Ar ratto and allows the 
use of a rather large time step. This proved to be useful for the determmation 
of the long-time behavtour of the solution, since it can be obtained with less 
computatronal effort than with other methods, as the one used m Ref. [7]. We have 
considered 500 x-grid points and At > 0.2. 

We have implemented the code for the initial conditions Q(x, 0) = q exp(i NS 
j: ~ lq(x’, O)l’ d.u) with q(x, 0) given by: 

I. One soliton solution 

q(x, 0) = u exp(rcp) 

u2 = 8A2 sin* y/[ch(4Az sm yx) + cos r] (3.1) 

q= -2NSA2cosp;NS 
s 

Y 
u2 dx 

- x 

for 0 < 7 < rc, which represents a soliton of velocity o = -4 NS A2 cos y and 
Ii. Modulated plane wave 

4(x,O)=A,exp(T)exp( -$), (3.2) 

where ,I is the wavelength, A, the amplitude, and L the modulation scalelength of 
the Gaussian envelope. 

The code preserves the solitons’ identity as it may be seen in Fig. 1 which 
corresponds to solitons with o = 0.5 and different amplitude. It also maintains the 
symmetries of the equation. As we have already said, we have solved the equation 
for NS = 1 and NS = - 1. However, it is clear from (1.4) that to change NS from 1 
to - 1 is equivalent to making the change x -+ -x. If we also make this change in 
the initial condition, we obtain 

q+(-x, r)=q-(--G t), (3.3) 

where q+ is the solution of the DNLS with posittve nonlinearity (NS = 1) and q 
the corresponding one to negative nonhnearrty (NS = - 1). This feature IS 
illustrated m Fig. 2, where the evolutton of the envelope (141 = IQ\) from the initial 
condition (3.2) is plotted. It 1s clear that, for this initial condition, the changes 
x + -?I and I. + - ,I are equrvalent. Fig. 2a corresponds to NS = 1 and ,I = 5 and 
Fig. 2b to NS = - 1 and ;1= - 5. The evolution of the imtially modulated plane 
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FIG I Propagation of an envelope sohton of the form (3 I ) (a) corresponds to )I= x/4, A’ = k@3, 
NS= - 1 The velocity of propagation IS c=4 A2 cos y =0 5 Af =02, A.u=O 12, 2N =500, (b) 
corresponds to ~=n/8, AZ=0 1353, NS= -1 The velocity of propagation IS c=4 Azcosy=05, 
A(=027 A.r=036. 2N=SOO 

waves also agrees with the predictton of the IST theory: the pulse decays into a 
soliton train plus a dispersive residue (radiation). We have obtained that, for this 
initial condition the number of solitons depends on the constant Cl, 

(3.4) 

If Cl IS positive, there is no soliton and if it is negative, the number of solitons is an 
increasing function of its absolute value. Finally the code also keeps the values of 
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FIG 2 Evolution of an mltlal pulse of the form (3 2) (modulated plane wave) with A,=06 and 
L = 14 (a) corresponds to posltlve nonlmeanty (NS = 1) and 1= 5, (b) corresponds to negative 
nonlmeanty (NS = - 1) and I = - 5 It IS clear that 19,.,(x, r)l = lq,b,(x. f)l and so, the changes x --* -.Y 
and 1+ -1 are equivalent In both cases IS At = 0.2, Ax = 0 2, 2N = 500 



DERIVATIVE NL SCHRijDINGER EQUATION 199 

the constants of motion of the DNLS equation. When the conservation of the two 
first constants of motion CO, 

and Cl is tested, it may be seen that the relative differences between their values at 
different instants are less than 5%. The conservation is better for solitons than for 
modulated plane waves. For those cases of an initial modulated plane wave with 
negative Cl, the errors grow till the moment at which the pulse achieves its 
maximum peak value and mmimum length scale, that is, just before the formation 
of the sohton train. At this moment the number of outer iterations (IT) to achieve a 
ratio 1 (Q; + ‘, ” - Q; + ‘1 IT- I )/Q, m+ i+ IT--l1 less than a given tolerance (0.01) is the 
highest one (in the examples we are analyzing it never exceeds the value of six 
iterations). Afterwards IT remains constant (IT = 2,3) and the errors first decrease 
and finally increase monotonically. For positive Cl these errors grow 
monotonically from the beginning, while the number of iterations remains constant 
(IT= 3). Although IT is constant for the cases which give no soliton train, the 
errors are greater than for the other cases. Besides, for negative Cl, it is evident that 
the characteristic time scales decrease with Cl. This fact allows the use of rather big 
time steps without losmg the properties of the solutions. The errors also depend on 
the time step, spatial grid size, and on the ratio A = (d?r)‘/dt. If we let At invariant 
and lower Ax, then n is also reduced and the conservation of CO and Cl is better 
However, the conservation of CO is more affected than that of Cl. If we let Ax 
Invariant and increase At, the conservation of CO is poorer. The errors of Cl, 
Instead, as /i IS lower, are hardly reduced for those steps with small ZT, but then 
grow when many iterations are needed. We suppose that this different sensitivity to 
the variation of Ax and Ar is due to the fact that Cl is the first constant that the 
IST method affords. CO may be prescribed independently, it does not depend on the 
scattering data [6]. As the numerical algorithm is closely related to the integration 
of the equation by the IST and only the n ratio enters in the computation of Qnew 
(Q”ld), Cl is more affected by ,4 variations and CO, by variations in Ax and At 
separately. Nevertheless, when the number of iterations IT is too large, Cl is better 
conserved for lower At values which give lower values of IT. 

IV. CONCLUSIONS 

We have applied the local Ablowitz-Ladik scheme to a nonlinear equation which 
is equivalent to the derivative nonlinear Schrodinger equation. The code maintains 
the main properties of the equation and allows the use of rather large time steps. 
These time steps may be chosen in such a way that the number of iterations needed 
to obtain Q”‘” (Q”ld) is not too large. As the characteristic time scales vary during 
the integration, the code may be improved by including the possibility of a 
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modification of At during the integration. We have analyzed the conservation of the 
two first constants of motion CO and Cl. The conservation is better for solitons 
than for modulated plane waves and for the NS = - 1 case better than for the 
NS = 1 one. The errors m the conservation, which do not exceed 5% of the 
constants values, depend on the time step and spatial grad size; while CO is most 
affected by variations in Ax and At separately, Cl is affected by variations in 
the ratio A = (A,~)~/df. We think better results could be achieved for lower Ax 
and At, and consequently, lower A values, but we did not try them because of 
computational limitations. 
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